Simple exploration of 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

7025-19-6,7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of tetrazoloquinoline aldehyde 1a (1 mmol) and rhodanine 2a (1 mmol), 20 mol % [HDBU][HSO4] was added, and the mixture was heated on an oil bath at 80 C for 30 min. During the reaction process, the mixture was solidified and after completion of the reaction (monitored by TLC), the reaction was cooled to room temperature, water was added and stirred for 5 min. The solid obtained was removed by filtration and recrystallized from EtOH-DMF. The filtrate was dried under reduced pressure to recover ionic liquid and reused in subsequent cycles.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Subhedar, Dnyaneshwar D.; Shaikh, Mubarak H.; Nawale, Laxman; Yeware, Amar; Sarkar, Dhiman; Khan, Firoz A. Kalam; Sangshetti, Jaiprakash N.; Shingate, Bapurao B.; Bioorganic and Medicinal Chemistry Letters; vol. 26; 9; (2016); p. 2278 – 2283;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,5908-62-3

A 50 ml flask was charged under nitrogen with 3-bromo-5-nitro-benzoic acid methyl ester (D11) (1 g, 3.8 mmol, 1 equiv), Cs2CO3 (536 mg, 4.4 mmol, 1.2 equiv) tris (DIBENZYLIDENEACETONE) DIPALLADIUM (0) (5 mg, 0.0055 mmol, 0.0154 equiv), Xantphos (10 mg, 0.014 mmol, 0.04 equiv) and toluene (15 ML). Isothiazolidine 1,1-dioxide (D22a) (536 mg, 4.4 mmol, 1.1 equiv) was then added and the resulting mixture was stirred at 90C for 16 hours then cooled to room temperature and diluted with H20 and AcOEt. The layers were separated, the aqueous phase diluted with a saturated aqueous NAHC03 solution and extracted with AcOEt. The combined organic phases were dried over MGS04 and concentrated in vacuo to give 3- (1, 1-DIOXO-116-ISOTHIAZOLIDIN-2-YL)-5-NITRO-BENZOIC acid methyl ester (D15) (187 mg, 16%) as a yellow solid. [M+H+NH3] + = 318.0, RT = 2. 81 min

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2004/50619; (2004); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 7025-19-6

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 1438-16-0

1438-16-0, 1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various fields.

1438-16-0, 3-Aminorhodanine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 37 3-[(1,3-Benzodithiol-2-ylidene)amino]-2-thioxo-4-thiazolidinone A solution of N-(1,3-benzodithiol-2-ylidene)-N-methylbenzaminium iodide (3.85g), N-aminorhodanine (1.48g) and anhydrous sodium carbonate (530 mg) in 100 ml of anhydrous dimethylformamide is heated at 120 C under a nitrogen atmosphere for 2 hours. The reaction mixture is then poured into 500 ml of ice/water and left stirring at 4 C for 2 hours. The resultant precipitate is collected by filtration and washed several times with cold water. The solid is air dried to yield 2.0g of crude product. This product is recrystallized from dimethylformamide to yield 1.9g of the title compound, melting point 295-300 C. Anal. Calc’d. for C10 H6 N2 OS4: C, 40.25; H, 2.03; N, 9.39; S, 42.98. Found: C, 40.27; H, 2.20; N, 9.30; S, 43.05.

1438-16-0, 1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; E. R. Squibb & Sons, Inc.; US4104467; (1978); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.,7025-19-6

To a mixture of 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg, 1.0 mmol), H2N-Gly-OEt hydrochloride (140 mg, 1.0 mmol) and EDC (192 mg, 1.0 mmol) in DMF (5.0 mL) was added triefhylamine (140 muEpsilon, 1.0 mmol). The reaction mixture was stirred at room temperature for 16 h, and then concentrated. The crude product was purified by flash chromatogrphy (EtOAc/Hexanes 1 :2- 1 :1) to give FX-3019 as a white solid (276 mg, 0.95 mmol, 95%): :H NMR (400 MHz, DMSO-de) delta 1.25-1.30 (t, 7 = 6.8 Hz, 3H), 2.64-2.70 (t, 7 = 7.6 Hz, 2H), 4.01 (s, 3H), 4.20-4.25 (dd, 7= 7.2, 14.0 Hz, 2H), 4.25-4.35 (t, 7 = 8.0 Hz, 2H), 6.04 (s, 1H); 13C NMR (100 MHz, DMSO-de) delta 14.1, 32.7, 35.4, 40.6, 41.4, 61.7, 169.4, 169.8, 173.6, 201.0; LC-TOF (M+H+) calcd for C10H15N2O4S2 291, found 291. Chemical Formula: C18H16BrN305S2

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; MELNICK, Ari; CERCHIETTI, Leandro, Carlos, A.; CARDENAS, Mariano, G.; XUE, Fengtian; MACKERELL, Alexander, D.; WO2014/204859; (2014); A2;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 26364-65-8

26364-65-8, 26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various fields.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a dry 50 mL single-mouth flask, 10 mmol of 2-cyanoimino-1,3-thiazolidine and 5 mL of acetone were added.In an ice bath, 0.32 mL of a 50% aqueous solution of NaOH was added, and the temperature was controlled at 0C to 5C.Add dropwise a solution of 5-(2,4-difluorophenyl)-2-furanoyl chloride in acetone to control the rate ofThe temperature was kept at 0C-5C; after the addition was completed, the reaction was performed at 0C-5C for 1-2 hours and TLC test.After the reaction is completed, a 4mol/L hydrochloric acid solution is added to adjust the pH to neutrality.Dichloromethane extraction was added and the dichloromethane layer was successively saturated with sodium bicarbonate,Saturated brine and water were washed three times. The dichloromethane layer was dried over anhydrous magnesium sulfate and filtered.The compound was isolated using a silica gel column (eluent: a 2:1 volume ratio of petroleum ether to ethyl acetate).Yield 75%

26364-65-8, 26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; South China Agricultural University; Cui Zining; Xiang Xuwen; Tao Hui; Jiang Shan; Zhang Lianhui; (19 pag.)CN107674070; (2018); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 19771-63-2

As the paragraph descriping shows that 19771-63-2 is playing an increasingly important role.

19771-63-2, (R)-2-Oxothiazolidine-4-carboxylic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,19771-63-2

EXAMPLE 18 (4R)-N-(2-Nitrooxypropyl)-2-oxothiazolidine-4-carboxamide (Compound No. 1-31) A procedure similar to that described in Example 1 was repeated, but using 2.0 g of (4R)-2-oxothiazolidine-4-carboxylic acid and 3.0 g of N-(2-nitrooxypropyl)amine nitrate, to obtain 24 mg of the title compound as pale yellow crystals, melting at 70-72 C. (after recrystallization from ethanol).

As the paragraph descriping shows that 19771-63-2 is playing an increasingly important role.

Reference£º
Patent; Sankyo Company, Limited; US5298516; (1994); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of 3-Bromo-1,5-naphthyridine

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

The thiazolidine compound, name is 1,1-Dioxo-isothiazolidine,cas is 5908-62-3, mainly used in chemical industry, its synthesis route is as follows.

5908-62-3, To 2-choro-5-nitro-3-trifluoromethypyridine (056 g, 2.48 mmo) and isothiazoHdine 1,1- dioxide (060 g, 496 mmo) in 1,4-dioxane (12 m) were added Cs2003 (0.81 g, 2.48 mmo) and argon was bubbed though the mixture for 10 mm. Then Xantphos (287 mg, 0,50 mrnoD and Pd2(dba)3 (114 mg, 0.124 mmoD were added. The reaction mixture was stirred for 40 mm at 140C in a microwave oven. The mixture was fi?tered through a pad of C&ite and the sovent was evaporated. The crude product was purified by flash co?umn chromatography on sihca ge (cyciohexane/AcOEt 100/0 to 50/50) to afford 2-(5- nitro-3-(trifluoromethy)pyridmn-2-y)isothiazoidine 1,1-dioxide. M/z = 312 [M+H]+, Rt = 0.87 mm (U PLC Method 32).

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; NOVARTIS AG; PISSOT SOLDERMANN, Carole; QUANCARD, Jean; SCHLAPBACH, Achim; SIMIC, Oliver; TINTELNOT-BLOMLEY, Marina; ZOLLER, Thomas; (161 pag.)WO2015/181747; (2015); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of Methyl 1,2,3,4-tetrahydroisoquinoline-8-carboxylate hydrochloride

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

The thiazolidine compound, name is 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,cas is 7025-19-6, mainly used in chemical industry, its synthesis route is as follows.

7025-19-6, General procedure: To a mixture of chloroisatin (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 30 min – 12 h, then cooled to room temperature. To the reaction was added water (15 mL). The resulting mixture was sonicated to give an orange -red slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder (71-92%):

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Patent; MELNICK, Ari; CERCHIETTI, Leandro, Carlos, A.; CARDENAS, Mariano, G.; XUE, Fengtian; MACKERELL, Alexander, D.; WO2014/204859; (2014); A2;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of Methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate hydrochloride

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

The thiazolidine compound, name is 1,1-Dioxo-isothiazolidine,cas is 5908-62-3, mainly used in chemical industry, its synthesis route is as follows.

5908-62-3, A flask was charged under nitrogen with 3-bromo-5-iodo-benzoic acid tert-butyl ester D8b (1 g, 2.6 mmol, 1 equiv), Cs2CO3 (1.26 g, 3.9 mmol, 1.5 equiv), tris (DIBENZYLIDENEACETONE) DIPALLADIUM (0) (12 mg, 0.013 mmol, 0.005 equiv), Xantphos (22 mg, 0.038 mmol, 0.015 equiv) and toluene (20 ML). ISOTHIAZOLIDINE 1,1-dioxide (D22a) (350 mg, 2.9 mmol, 1.1 equiv) was then added and the resulting mixture was stirred at 100C for 16 h then cooled to room temperature and diluted with AcOEt. The organic phase was washed with saturated aqueous NAHC03 solution, dried over MGS04 and concentrated in vacuo. The residue was triturated with Et20 to give 3-BROMO-5-(1, 1-DIOXO-116-ISOTHIAZOLIDIN-2-YL)-BENZOIC acid tert-butyl ester (D17) (350 mg 38%) as a white solid.

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; GLAXO GROUP LIMITED; WO2004/50619; (2004); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com