Analyzing the synthesis route of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

7025-19-6, General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 185137-29-5

The synthetic route of 185137-29-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.185137-29-5,(S)-4-Phenylthiazolidine-2-thione,as a common compound, the synthetic route is as follows.

General procedure: Under N2 atmosphere, NaH (120 mg, 60% dispersion in mineral oil, 3 mmol)was added to a solution of thiazolidine-2-thione 2 (2.5 mmol) in 5 mL of THF and the resulting solution was cooled to 78C by a dry-ice-acetone bath. Propionyl chloride(255 mg, 2.5 mmol, 480 muL) was then dropped in. After removal of the solvent in vacuo,the residue was purified by column chromatography with a mixture of petroleum ether(60-90C)/EtOAc (5:1, v/v) as eluent., 185137-29-5

The synthetic route of 185137-29-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Chen, Ning; Du, Hongguang; Liu, Weidong; Wang, Shanshan; Li, Xinyao; Xu, Jiaxi; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 190; 1; (2015); p. 112 – 122;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,5908-62-3

A stirred mixture of [3-(2-Methyl-l,3-dioxolan-2-yl)tricyclo[3.3.1.03’7]non-l-yl] methyl methanesulfonate as obtained in preparation 2 (1.0 g, 2.9 mmol), K2CO3 (1.16 g, 8.7 mmol) and isothiazolidine- 1,1 -dioxide (0.53 g, 4.35 mmol) in DMF (12.0 mL) was heated to 110C for 16 h. The reaction mixture was cooled to room temperature, diluted with water and extracted with EtOAc. The combined organic layer was washed with brine, dried over Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified by column chromatography to obtain 2-{[3-(2-methyl-l,3-dioxolan-2- yl)tricyclo[3.3.1.03’7]non-l-yl] methyljisothiazolidine 1,1-dioxide as a viscous liquid (0.69 g) in 70% yield, m/z (M+l) 342; 1H NMR (CDCl3) 300 MHz delta 4.04-3.92 (m, 4H), 3.30 (t, J= 6.8 Hz, 2H), 3.10 (t, J= 7.4 Hz, 2H), 2.94 (d, J= 14.6 Hz, IH), 2.87 (d, J= 14.6 Hz, IH), 2.40-2.27 (m, 4H), 1.88-1.72 (m, 2H), 1.72-1.55 (m, 4H), 1.55-1.38 (m, 4H), 1.27 (s, 3H).

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; MATRIX LABORATORIES LTD.; WO2007/113634; (2007); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

7025-19-6,7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

5908-62-3,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

The product of example 67 (460 mg, 8.6 mmol), sulfonamide (210 mg, 1.73 mmol), K2CO3 (240 mg, 1.73 mmol), CuI (30 mg, 0.17 mmol) and DMEDA (30 mg, 0.34 mmol) were mixed in toluene (10 ml) and heated at 90 0C for 3 hours. After being cooled to room temperature, the mixture was filtered, washed with DCM. The filtrate was concentrated into dryness, and the residue was purified by column chromatography using DCM/EA (5/2) as eluent to give the title compound (129 mg, 26.0 % yield).1H NMR (300 MHz, DMSO-/) delta 1.12 (q, J= 6.2 Hz, 6H), 2.34 (dd, J= 10.5, 12.4 Hz, IH), 2.41-2.50 (m, 2H?), 2.78 (dd, J= 10.6, 13.0 Hz, IH), 3.41-3.53 (m, 3H), 3.55-3.67 (m, IH), 3.77 (s, 3H), 3.78 -3.91 (m, 3H), 4.14 (d, J= 12.9 Hz, IH), 4.95 (d, J= 17.2 Hz, IH), 5.02 (s, 2H), 5.19 (d, J= 16.8 Hz, IH), 7.29-7.44 (m, 5H), 7.70 (s, IH).MS (ESI+) m/z 51 A (M+l)

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; AVEXA LIMITED; DEADMAN, John, Joseph; JONES, Eric, Dale; LE, Giang, Thanh; RHODES, David, Ian; THIENTHONG, Neeranat; VAN DE GRAFF, Nicholas, Andrew; WINFIELD, Lisa, Jane; WO2010/31; (2010); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of Phthalazin-1(2H)-one

1438-16-0, As the rapid development of chemical substances, we look forward to future research findings about 1438-16-0

The thiazolidine compound, cas is 1438-16-0 name is 3-Aminorhodanine, mainly used in chemical industry, its synthesis route is as follows.

General procedure: A mixture of aminorhodanine (1 mmol), isatin (1 mmol) and 5 muL of acetic acid in 2mL of distilled ethanol was placed in a cylindrical quartz reactor (Phi = 4 cm). The reactor was introducedinto a monomode microwave (Anton Paar) apparatus, for 5 min at100 C and 50 Watts. The crude reaction mixture was allowed tocool down at room temperature and ethanol (10 mL) or mixture of H2O/EtOH (10 mL) was directly added in the cylindrical quartzreactor. The resulting precipitated product was filtered off and waspurified by recrystallization from ethanol if necessary.

1438-16-0, As the rapid development of chemical substances, we look forward to future research findings about 1438-16-0

Reference£º
Article; Khaldoun, Khadidja; Safer, Abdelmounaim; Boukabcha, Nourdine; Dege, Necmi; Ruchaud, Sandrine; Souab, Mohamed; Bach, Stephane; Chouaih, Abdelkader; Saidi-Besbes, Salima; Journal of Molecular Structure; vol. 1192; (2019); p. 82 – 90;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of 6-Bromo-1,8-naphthyridin-2-ol

179087-93-5, As the rapid development of chemical substances, we look forward to future research findings about 179087-93-5

The thiazolidine compound, cas is 179087-93-5 name is 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid, mainly used in chemical industry, its synthesis route is as follows.

Examples (Example 1) 4-[(2,4-Dioxothiazolidin-5-yl)methyl]phenoxyacetyl chloride Thionyl chloride (170 mg, 1.34 mmol) and then pyridine (1 drop) were added to a suspension of 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid (220 mg, 0.78 mmol) in dichloromethane (10 ml) at room temperature, and the mixture was refluxed for 3.5 hours. The resulting solution was concentrated under reduced pressure to obtain about 250 mg of the gummy target compound. Nuclear magnetic resonance spectrum (400 MHz, DMSO-d6) delta (ppm): 3.05 (1H, dd, J = 9.0 Hz, J = 14.1 Hz, CH2CH), 3.31 (1H, dd, J = 4.1 Hz, J = 14.1 Hz, CH2CH), 4.64 (2H, s, CH2O), 4.87 (1H, dd, J = 4.1 Hz, J = 9.0 Hz, CH2CH), 6.85 (2H, d, J = 8.6 Hz, aromatic), 7.16 (2H, J = 8.6 Hz, aromatic), 12.02 (1H, s, NH).

179087-93-5, As the rapid development of chemical substances, we look forward to future research findings about 179087-93-5

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP1894929; (2008); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of 2-Benzoxazolinone

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

The thiazolidine compound, cas is 5908-62-3 name is 1,1-Dioxo-isothiazolidine, mainly used in chemical industry, its synthesis route is as follows.

5908-62-3, To a stirred solution of racemic 3-fluoro-2-({9-fluoro-6-methanesulfonyl-3-[4- (2H3)methyl-l-methyl-lH-l,2,3-triazol-5-yl]-5H-pyrido[3,2-b]indol-5-yl}(oxan-4- yl)methyl)pyridine (80.0 mg, 0.140 mmol) and isothiazolidine- 1,1 -dione (69.8 mg, 0.580 mmol) in NMP (0.70 mL) was added t-BuOK (56.5 mg, 0.500 mmol). The mixture was heated at 65 C for 70 min and cooled to room temperature. The mixture was diluted with water and extracted with EtOAc. Combined EtOAc extracts were dried (MgSCn), filtered, and concentrated. The crude product was purified by silica gel column chromatography (Teledyne ISCO CombiFlash 0% to 100% solvent A/B= DCM/10% MeOH/DCM, RediSep Si02 12 g, detecting at 254 nM, and monitoring at 220 nM). Concentration of appropriate fractions provided racemic 2-{5-[(3-fluoropyridin-2- yl)(oxan-4-yl)methyl]-6-methanesulfonyl-3-[4-(2H3)methyl-l-methyl-lH-l,2,3-triazol-5- yl]-5H-pyrido[3,2-b]indol-9-yl}-l 6,2-thiazolidine-l,l-dione (110 mg). This racemic mixture was separated by chiral prep SFC (Berger SFC MGII, ColummChiral IB 25 X 2.1 cm ID, 5muiotaeta Flow rate: 50.0 mL/min. Mobile Phase: 80/20 CC /MeOH Detector Wavelength: 220 nm) to give Enantiomers A (13.3 mg, 13%) and B (10.5 mg, 11%). Enantiomer A: NMR (400MHz, CDCb) delta 8.57 (d, J=1.8 Hz, 1H), 8.46 (dt, J=4.4, 1.5 Hz, 1H), 8.40 (d, J=8.6 Hz, 1H), 8.15 (d, J=2.0 Hz, 1H), 7.77 (d, J=8.6 Hz, 1H), 7.41- 7.28 (m, 3H), 4.34-4.24 (m, 1H), 4.21-4.11 (m, 1H), 4.01 (br dd, J=12.0, 2.7 Hz, 1H), 3.95 (s, 3H), 3.82 (br dd, J=11.6, 3.1 Hz, 1H), 3.61-3.53 (m, 2H), 3.46 (br d, J=2.3 Hz, 1H), 3.43 (s, 3H), 3.34 (br d, J=11.7 Hz, 1H), 3.20 (td, J=l 1.9, 1.9 Hz, 1H), 2.84-2.71 (m, 2H), 1.89-1.74 (m, 3H), 0.54 (br d, J=13.0 Hz, 1H); SFC RT = 10.07 min (Column: Chiralcel IB 250 x 4.6 mm, 5 muiotaeta; Mobile Phase: 80/20 CCh/MeOH; Flow: 2 mL/min); Enantiomer B: NMR (400MHz, CDCb) delta 8.56 (d, J=1.8 Hz, 1H), 8.45 (dt, J=4.3, 1.4 Hz, 1H), 8.40 (d, J=8.6 Hz, 1H), 8.15 (d, J=1.8 Hz, 1H), 7.76 (d, J=8.6 Hz, 1H), 7.42- 7.28 (m, 3H), 4.34-4.24 (m, 1H), 4.22-4.12 (m, 1H), 4.01 (br dd, J=11.7, 2.8 Hz, 1H), 3.95 (s, 3H), 3.82 (br dd, J=l 1.3, 3.2 Hz, 1H), 3.56 (dt, J=7.7, 3.9 Hz, 2H), 3.46 (br d, J=2.4 Hz, 1H), 3.43 (s, 3H), 3.37-3.28 (m, 1H), 3.23-3.15 (m, 1H), 2.84-2.69 (m, 2H), 1.79 (br dd, J=12.8, 4.2 Hz, 3H), 0.54 (br d, J=12.8 Hz, 1H) LCMS (M+H) = 556.2; SFC RT = 12.21 min (Column: Chiralcel IB 250 x 4.6 mm, 5 muiotaeta; Mobile Phase: 80/20 CCh/MeOH; Flow: 2 mL/min).

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; HAN, Wen-Ching; DEGNAN, Andrew P.; DESKUS, Jeffrey A.; GAVAI, Ashvinikumar V.; GILL, Patrice; SCHMITZ, William D.; STARRETT, John E., Jr.; (193 pag.)WO2016/183115; (2016); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of 1-Methylimidazolidin-2-one

1438-16-0, As the rapid development of chemical substances, we look forward to future research findings about 1438-16-0

The thiazolidine compound, cas is 1438-16-0 name is 3-Aminorhodanine, mainly used in chemical industry, its synthesis route is as follows.

EXAMPLE 37 3-[(1,3-Benzodithiol-2-ylidene)amino]-2-thioxo-4-thiazolidinone A solution of N-(1,3-benzodithiol-2-ylidene)-N-methylbenzaminium iodide (3.85g), N-aminorhodanine (1.48g) and anhydrous sodium carbonate (530 mg) in 100 ml of anhydrous dimethylformamide is heated at 120 C under a nitrogen atmosphere for 2 hours. The reaction mixture is then poured into 500 ml of ice/water and left stirring at 4 C for 2 hours. The resultant precipitate is collected by filtration and washed several times with cold water. The solid is air dried to yield 2.0g of crude product. This product is recrystallized from dimethylformamide to yield 1.9g of the title compound, melting point 295-300 C. Anal. Calc’d. for C10 H6 N2 OS4: C, 40.25; H, 2.03; N, 9.39; S, 42.98. Found: C, 40.27; H, 2.20; N, 9.30; S, 43.05.

1438-16-0, As the rapid development of chemical substances, we look forward to future research findings about 1438-16-0

Reference£º
Patent; E. R. Squibb & Sons, Inc.; US4104467; (1978); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of 6-Bromo-1,2,3,4-tetrahydroquinoline

171877-39-7, As the rapid development of chemical substances, we look forward to future research findings about 171877-39-7

The thiazolidine compound, cas is 171877-39-7 name is (S)-4-Benzylthiazolidine-2-thione, mainly used in chemical industry, its synthesis route is as follows.

To an ice-bath cold solution of 35 (S)-4-benzylthiazolidine-2-thione13 (18.37g, 87.87mmol) and 36 Et3N (26.66mL, 175.74mmol) in 37 CH2Cl2 (266mL) was added 38 4-phenylbutanoyl chloride (freshly prepared from 39 4-phenylbutyric acid (17.31g, 105.44mmol)). The resulting mixture was stirred at room temperature for 24h. Then brine was added and extracted with CH2Cl2 (3¡Á40mL), the organic layers were washed (brine), dried (Na2SO4) and concentrated. The yellow crude oil was purified through chromatography (silica-gel, hexanes/40 EtOAc (98:2) and (95:5)) to afford 24.76mg (77%); [alphaD25]=+157.80 (c=2.3, CHCl3). IR (NaCl) nu 3025, 2935, 2849, 1603, 1695, 1496, 1454, 1342, 1394, 1359, 1342, 1293, 1264, 1192, 1157, 1135, 1040, 893, 746, 701cm-1. 1H NMR (500MHz, CDCl3) delta 7.16-7.34 (10H, m), 5.33 (1H, ddd, J=4.0, 7.5 and 11.5Hz), 3.38 (1H, ddd, J=6.0, 9.0 and 17.0Hz), 3.33 (1H, dd, J=7.5 and 11.5Hz), 3.13-3.20 (2H, m), 3.01 (1H, dd, J=10.5 and 13.0Hz), 2.84 (1H, d, J=11.5Hz), 2.68 (2H, t, J=7.0Hz). 13C NMR (125MHz, CDCl3) delta 201.06, 173.73, 141.53, 136.56, 129.44, 128.88, 128.53, 128.36, 127.19, 125.96, 68.53, 37.93, 36.79, 35.11, 31.90, 26.43ppm.. HRMS m/z calcd. for C20H21ONS2Na [M+Na+]: 378.0962, found: 378.0970; m/z calcd. for C20H21ONS2K [M+K+]: 394.0702, found: 394.0724.

171877-39-7, As the rapid development of chemical substances, we look forward to future research findings about 171877-39-7

Reference£º
Article; Royo, Santiago; Schirmeister, Tanja; Kaiser, Marcel; Jung, Sascha; Rodriguez, Santiago; Bautista, Jose Manuel; Gonzalez, Florenci V.; Bioorganic and Medicinal Chemistry; vol. 26; 16; (2018); p. 4624 – 4634;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com