Introduction of a new synthetic route about 26364-65-8

26364-65-8, With the rapid development of chemical substances, we look forward to future research findings about 26364-65-8

2-Cyanoimino-1,3-thiazolidine, cas is 26364-65-8, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

General procedure: Thiazolidin-2-ylidene-cyanamide (0.317 g, 2.50 mmol) inacetonitrile (20 mL) was dropwise added to a stirred solutionof substituted benzyl bromide (2.5 mmol) and 14 mL NaOHaqueous solution (1 M). The mixture is stirred at room temperaturefor 8-10 h. The soild was collected by filtration,washed with n-hexane and dried in vacuo.

26364-65-8, With the rapid development of chemical substances, we look forward to future research findings about 26364-65-8

Reference£º
Article; Jia, Ai-Quan; Ma, Sen; Wang, Jun-Ling; Zhang, Qian-Feng; Journal of Chemical Crystallography; (2020);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

7025-19-6, General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 5908-62-3

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

1,1-Dioxo-isothiazolidine, cas is 5908-62-3, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

5908-62-3, General procedure: To the mixture of the precursor 10(2.26 g, 10.1 mmol, 1.5 equiv) and tert-butyl 1,2,5-thiadiazolidine-2-carboxylate 1,1-dioxide (1.50 g, 6.75 mmol, 1.0 equiv) in dry DMF(10 mL), was added Cs2CO3 (6.60 g, 20.25 mmol, 3.0 equiv). Themixture was stirred at room temperature overnight, and thenextracted with ethyl acetate. The organic phase was washed withsaturated NaHCO3 and brine, dried over anhydrous Na2SO4, filteredand concentrated. The resulting residue was purified via silica gelchromatography to give 11a as colorless oil (1.96 g, 79%).

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Article; Chen, Shulun; Guo, Wei; Liu, Xiaohua; Sun, Pu; Wang, Yi; Ding, Chunyong; Meng, Linghua; Zhang, Ao; European Journal of Medicinal Chemistry; vol. 179; (2019); p. 38 – 55;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 5908-62-3

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

1,1-Dioxo-isothiazolidine, cas is 5908-62-3, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

5908-62-3, Example 86; N- (3-Cyclobutyl-2, 3, 4,5-tetrahydro-1 H-3-benzazepin-7-yl)-4- (1, 1-dioxido-2- isothiazolidinyl) benzamide (E86); A mixture of N- (3-cyclobutyl-2, 3,4, 5-tetrahydro-1 H-3-benzazepin-7-yl)-4-iodobenzamide (E11) (150mg, 0.34 mmol), potassium carbonate (169 mg, 1.22 mmol), copper (1) iodide (19 mg, 0.1 mmol), N,N’-dimethyl-1, 2-ethanediamine (0.01 ml, 0.1 mmol) and isothiazolidine 1,1-dioxide (123 mg, 1.0 mmol) in dioxan (3 ml) was heated in a microwave reactor at 140 C for 20 minutes. The mixture was diluted with methanol and purified on an SCX ion exchange cartridge eluting with methanol and then a 2M methanolic ammonia solution. The basic fractions were concentrated in vacuo and the residue purified by column chromatography eluting with a mixture of 2M methanolic ammonia solution and dichloromethane (3-97) to afford the title compound (E86) MS (ES+), m/e 440 [M+H] +.

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/58837; (2005); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 2682-49-7

2682-49-7, With the rapid development of chemical substances, we look forward to future research findings about 2682-49-7

Thiazolidin-2-one, cas is 2682-49-7, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

(d) A mixture containing 3.09 g (0.03 mol) of 2-thiazolidinone, 11.2 g of potassium carbonate, 1.8 g of potassium hydrogen carbonate, 0.5 ml of water, 30 ml of methyl isobutyl ketone and 3.0 ml (0.033 mol) of benzyl bromide is refluxed for 7 hours. After cooling down, the reaction mixture is washed twice with 30 ml of water each, the organic phase is dried and evaporated. The yellow oily product (which solidifies on standing) may be purified by column chromatography (by using Kieselgel 60 of 230-400 mesh as sorbent and chloroform as eluent) to give 3.2 g (55.2%) of the title compound, m.p.: 50-51 C.

2682-49-7, With the rapid development of chemical substances, we look forward to future research findings about 2682-49-7

Reference£º
Patent; Richter Gedeon Vegyeszeti Gyar Rt.; US4937252; (1990); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.,5908-62-3

isothiazolidine-1,1-dioxide (150 mg, 1.24 mmol) And sodium hydride (52mg, 1.30mmol) in 3ml DMF, After stirring for 30min, A 2 ml solution of DMF in which N-Boc-bromoethylamine (276 mg, 1.24 mmol) was dissolved was added dropwise, Stir overnight, After the TLC detection reaction is completed, add water for extraction. Organic layer in turn with water , Washed with saturated saline, Dry over anhydrous sodium sulfate. Suction filtration, the filtrate was concentrated under reduced pressure, the crude product was separated by column chromatography, 150 mg of a white solid were obtained with a yield of 46%.

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; Chinese Academy Of Sciences Shanghai Pharmaceutical Institute; Zhang Ao; Meng Linghua; Ding Jian; Chen Shulun; Ding Chunyong; Guo Wei; (26 pag.)CN110143955; (2019); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 26364-65-8

The synthetic route of 26364-65-8 has been constantly updated, and we look forward to future research findings.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,26364-65-8

General procedure: Thiazolidin-2-ylidene-cyanamide (0.317 g, 2.50 mmol) inacetonitrile (20 mL) was dropwise added to a stirred solutionof substituted benzyl bromide (2.5 mmol) and 14 mL NaOHaqueous solution (1 M). The mixture is stirred at room temperaturefor 8-10 h. The soild was collected by filtration,washed with n-hexane and dried in vacuo.

The synthetic route of 26364-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Jia, Ai-Quan; Ma, Sen; Wang, Jun-Ling; Zhang, Qian-Feng; Journal of Chemical Crystallography; (2020);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

7025-19-6,7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a solution of 1,3-diaryl-4-formylpyrazoles 4 (1.0 mmol) and rhodanine analogs 5 (1.0 mmol) in absolute ethanol (8.0 mL) was added drops of acetic acid and piperidine. The reaction mixture was stirred at 40-50 C, until the completion of the reaction as evidenced by TLC. After the solution was cooled, the resulting reaction mixture was ltered off and crude product was purified by 95% ethanol to afford pure products 6-29. The yield, melting point and spectral data of each compound are given below.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Xu, Li-Li; Zheng, Chang-Ji; Sun, Liang-Peng; Miao, Jing; Piao, Hu-Ri; European Journal of Medicinal Chemistry; vol. 48; (2012); p. 174 – 178;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com